因为∑an条件收敛,则an肯定是交错级数。
则|a(n+1)|<|an|
则级数∑an x^n
其收敛域为x<=|a(n+1)|/|an|
则x∈(-1,1)
则∑an (x-1)^n的收敛域为
|x-1|<|a(n+1)|/|an| <1
则 x∈(0, 2)
∫√(x^2-1)dx令x=sect 则 ∫√(x^2-1)dx=∫tantdsect=∫tan^2tsectdt=∫(sec^2t-1)sectdt=∫(sec^3t-sect)dt=tant*sect-∫sec^3tdt即∫(sec^3t-sect)dt=tant*sect-∫sec^3tdt2∫(sec^3t)dt=tant*sect+∫sectdt∫sec^3tdt=1/2tant*sect+1/2ln|sect+tant|+c所以 ∫√(x^2-1)dx=tant*sect-∫sec^3tdt=1/2tant*sect-1/2ln|sect+tant|+c=1/2x√(x^2-1)-1/2ln|x+√(x^2-1)|+c
u
∑
v
∑
但 ∑
达郎贝尔定理。