解答:(Ⅰ)证明:∵PA=PD,Q为AD的中点,
∴PQ⊥AD,PQ∩QB=Q,
∴AD⊥平面QPB,
∵四边形ABCD是平行四边形,∴BC∥AD,
∴BC⊥面PQB,
∴BC⊥PB.
(Ⅱ)由于面PAD⊥面ABCD,且PQ⊥AD,
∴PQ⊥面PBQ,
∴PQ的长即为四棱锥P-ABCD的高,
设M到面ABCD的距离为h,
则由
=PM MC
知,1 2
=h PQ
,2 3
∴h=
PQ.2 3
设四边形ABCD的面积为S,
∴VC-MQB=VM-QBC=
×1 3
Sh=1 2
S?PQ,1 9
∴
=VC?MQB VP?ABCD
=
Sh1 6
S?PQ1 3
.1 3