(甲)如图,已知斜三棱柱ABC-A1B1C1的侧面A1C⊥底面ABC,∠ABC=90°,BC=2,AC=23,又AA1⊥A1C,AA1=A1C

2025-05-07 03:32:24
推荐回答(1个)
回答1:

解答:(甲)(1)∵侧面A1C⊥底面ABC,∴A1A在平面ABC上的射影是AC、A1A与底面ABC所成的角为∠A1AC.
∵A1A=A1C,A1A⊥A1C,∴∠A1AC=45°.

(2)作A1O⊥AC于O,则A1O⊥平面ABC,再作OE⊥AB于E,连接A1E,则A1E⊥AB,
所以∠A1EO就是侧面A1B与底面ABC所成二面角的平面角.
在Rt△A1EO中,A1O=

1
2
AC=
3
OE=
1
2
BC=1

tan∠A1EO=
A1O
OE
3
.∠A1EO=60°.

(3)设点C到侧面A1B的距离为x.
VA1?ABCVC?A1BC
1
3
?A1O?S△ABC
1
3
?x?SA1BC?A1O?S△ABC=x?S△ABC
.(*)
A1O=
3
,OE=1,∴A1E=
3+1
=2

AB=
(2
3
)
2
?22
=2
2
,∴SA1AB
1
2
?2
2
?2=2
2

S△ABC
1
2
×2×2
2
=2
2
.∴由(*)式,得2
2
=x?2
2
=1
.∴x=1

(乙)(1)证明:如图,以O为原点建立空间直角坐标系.
设AE=BF=x,则A'(a,0,a),F(a-x,a,0),C'(0,a,a),E(a,x,0),
A′F
=(-x,a,-a),
C′E
=(a,x-a,-a).
A′F
?
C′E
=?xa+a(x?a)+a2=0

∴A'F⊥C'E.

(2)解:记BF=x,BE=y,则x+y=a,则三棱锥B'-BEF的体积为V=
1
6
xya≤
a
b
(
x+y
2
)2
1
24
a2

当且仅当x=y=
a
2