解答:(甲)(1)∵侧面A1C⊥底面ABC,∴A1A在平面ABC上的射影是AC、A1A与底面ABC所成的角为∠A1AC.
∵A1A=A1C,A1A⊥A1C,∴∠A1AC=45°.(2)作A1O⊥AC于O,则A1O⊥平面ABC,再作OE⊥AB于E,连接A1E,则A1E⊥AB,
所以∠A1EO就是侧面A1B与底面ABC所成二面角的平面角.
在Rt△A1EO中,A1O=
AC=1 2
,OE=
3
BC=1,1 2
∴tan∠A1EO=
=
A1O OE
.∠A1EO=60°.
3
(3)设点C到侧面A1B的距离为x.
∵VA1?ABC=VC?A1BC,
∴
?A1O?S△ABC=1 3
?x?S△A1BC?A1O?S△ABC=x?S△ABC.(*)1 3
∵A1O=
,OE=1,∴A1E=
3
=2.
3+1
又AB=
=2
(2
)2?22
3
,∴S△A1AB=
2
?21 2
?2=2
2
.
2
又S△ABC=
×2×21 2
=2
2
.∴由(*)式,得2
2
=x?2
2
=1.∴x=1
2
(乙)(1)证明:如图,以O为原点建立空间直角坐标系.
设AE=BF=x,则A'(a,0,a),F(a-x,a,0),C'(0,a,a),E(a,x,0),
∴
=(-x,a,-a),A′F
=(a,x-a,-a).C′E
∵
?A′F
=?xa+a(x?a)+a2=0,C′E
∴A'F⊥C'E.
(2)解:记BF=x,BE=y,则x+y=a,则三棱锥B'-BEF的体积为V=
xya≤1 6
(a b
)2=x+y 2
a2.1 24
当且仅当x=y=
a 2