已知函数f(x)= 2x x+1 (1)当x≥1时,证明:不等式f(x)≤x+lnx恒成立.(2)若数列{a n

2025-05-07 04:02:04
推荐回答(1个)
回答1:

(1)∵x≥1得f(x)-x=
2x
x+1
-x=
2x- x 2 -x
x+1
=
-x(x-1)
x+1
≤0,
而x≥1时,lnx≥0
∵x≥1时,f(x)-x≤lnx
∴当x≥1时,f(x)≤x+lnx恒成立
(2)a 1 =
2
3
,a n+1 =f(a n ),b n =
1
a n
-1,n∈N + ∴a n+1 =
2 a n
a n +1
1
a n+1
=
1
2
+
1
2 a n

∴a 1 =
2
3
,a n+1 =f(a n ),b n =
1
a n
-1,n∈N +
b n+1
b n
=
1
a n+1
-1
1
a n
-1
=
1
2
+
1
2 a n
-1
1
a n
-1
=
1
2 a n
-
1
2
1
a n
-1
=
1
2
(n∈N +
又b 1 =
1
a 1
-1=
1
2
∴{b n }是首项为
1
2
,公比为
1
2
的等比数列,其通项公式为b n =
1
2 n

又a 1 =
2
3
,a n+1 =f(a n ),b n =
1
a n
-1,n∈N +
∴a n =
1
b n +1
=
1
1
2 n
+1
=
2 n
2 n +1
(n∈N +
(3)c n =a n ?a n+1 ?b n+1 =
2 n
2 n +1
×
2 n+1
2 n+1 +1
×
1
2 n+1
=
2 n
2 n +1
×
1
2 n+1 +1
=
1
2 n +1
-
1
2 n+1 +1

∴c 1 +c 2 +c 3 +…+c n =(
1
2 1 +1
-
1
2 2 +1
)+(
1
2 2 +1
-
1
2 3 +1
)+…+(
1
2 n +1
-
1
2 n+1 +1
)=
1
3
-
1
2 n+1 +1
1
3