解答:证明:(1)∵CE⊥CD,∴∠DCE=∠ACB=90°又∵∠CDE=∠A∴△DCE∽△ACB,∴ CE CB = CD CA ;(2)∵ CE CB = CD CA ,∴ CE CD = CB CA ,∵∠DCE=∠ACB=90°,∴∠BCE=∠ACD,∴△BCE∽△ACD,∴∠CBE=∠A,∵∠A+∠ABC=90°,∴∠CBE+∠ABC=90°,∴∠ABE=90°,∴AB⊥BE.